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ABSTRACT 

Search efficiency is usually improved by presenting observers with highly detailed target 

cues (e.g., pictures). However, in the absence of accurate target cues, observers must rely only on 

categorical information to find targets. Models of visual search suggest that guidance in a 

categorical search results from matching categorically-diagnostic target features in the search 

display to a top-down attentional set (i.e., the search template), but the mechanisms by which 

such attentional set is constructed have not been specified. The present investigation examined 

the influences of both semantic and episodic memory on search template formation. More 

precisely, the present study tested whether observers incorporated a recent experience with a 

target-category exemplar into their search template, instead of relying on long-term learned 

regularities about object categories (Experiment 1) or on the semantic context of the search 

display (Experiment 2). In both experiments participants completed a categorical search task 

(75% of trials) in conjunction with a dot-probe response task (25% of trials). The dot-probe 

response task assessed the contents of the search template by capturing spatial attention if the 

dot-probe was presented at an inconsistent location relative to objects matching the search 

template. In Experiment 1 it was shown that observers include recently encoded objects into their 

search templates, when given the opportunity to do so. Experiment 2, however, showed that 

observers rely on context semantics to construct categorical search templates, and they continue 

to do so in the presence of repeated target cues related to different contexts. These results suggest 

that observers can, and will, rely on episodic representations to construct categorical search 

templates when such representations are available, but only if no external cues (i.e., scene 

semantics) are present to identify criterial target feature. 
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INTRODUCTION 

People frequently conduct some sort of visual search as part of their daily routines. From 

finding small items (e.g., looking for car keys) to locating much larger objects (e.g., searching 

for a car in a parking lot), visual search is an integral part of different activities. In laboratory 

visual search tasks, observers are shown a search target, which they store in visual working 

memory (VWM), in order to find that target later among an item array, or in a scene, as quickly 

as possible. Researchers often manipulate the precision of the target cue to understand how 

observers conduct efficient searches. The present thesis focused on how observers use episodic 

and semantic information to form representations of search targets when only categorical 

information about targets is available. More precisely, the contents of VWM in preparation for a 

search task was assessed using an attention-capture paradigm to examine whether observers 

would include features from a single, recent experience with a target category in their target 

representation or if they would rely on a gist-level representation constructed from semantic 

memory. 

Visual search is typically studied by presenting observers with a template cue (i.e., 

picture of the to-be-found target) or a categorical cue (i.e., word describing the target) and then 

having them locate the target among a set of distractor items as quickly as possible (see Figure 

1). Researchers usually measure the accuracy of the search (i.e., whether or not the observer 

found the target) as well as the efficiency of the search (i.e., how quickly was the target found). 

Moreover, if eye-movements are recorded, the search process can also be divided into three 

stages, search initiation, guidance, and target verification (Castelhano, Pollastek, & Cave, 2008; 

Malcolm & Henderson, 2009; Spotorno, Malcolm, Tatler, 2014). The initiation of a search is 

measured by the latency and direction of the first saccade (i.e., a quick movement of both eyes 
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between two fixation points) away from a starting location, and is assumed to reflect pre-search 

preparatory processes (Malcolm & Henderson, 2009; Spotorno, Malcolm, Tatler, 2014). Search 

guidance, defined as the latency from the first saccade to the first fixation on the target, involves 

the selection of specific items in the array for further processing, as dictated by bottom-up and 

top-down control mechanisms (Wolfe, Cave, & Franzel, 1989). These attentional-control 

mechanisms allow observers to ignore irrelevant and distracting items, making the search 

process more efficient. Lastly, target verification results from fixating on an object and deciding 

that it is the target. This last stage is influenced by the target information stored in VWM 

(Castelhano, Pollastek, & Cave, 2008; Malcolm & Henderson, 2009).  

Figure 1. Example of a categorical visual search experiment trial. 

 

In search tasks, the number of distractor items in the display can vary from trial to trial, 

impairing the first two search stages when many distractors are presented (Duncan & 

Humphreys, 1989; Wolfe, Cave, & Franzel, 1989). Moreover, distinguishing task-relevant from 

task-irrelevant features is not a trivial process, as items in the search array may share several 

features with each other and with the target. Consequently, the search cue plays an important 

role, by informing observers which features should be maintained in VWM, as those features 

will facilitate the search process. Research demonstrates that template cues aid search guidance 

more efficiently than categorical cues, allowing observers to locate targets much faster (Yang & 

Zelnisky, 2009; Vickery, King, & Jiang, 2005). Yet, in many real-life situations, such as TSA 
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agents searching for illegal items in passengers’ luggage or oncologists searching for nodules in 

x-ray scans, observers do not always have access to template representations, and must instead 

rely on categorical information to find targets.   

Visual search models suggest that, when observers search for categorically-defined 

targets, top-down attentional sets guide the search toward task-relevant (or categorically-

diagnostic) object features (Duncan & Humphreys, 1989; Wolfe, Cave, & Franzel, 1989). This 

attentional set, or search template, contains a visual representation of the target item and its 

features, and it is compared to potential target items in the search display. In basic research, this 

is commonly studied using simple target items with a controlled number of distinctive features. 

For example, if an observer is searching for a small, red, vertical line among different distractors, 

her attention may be directed towards the size, color, or orientation of the items in the search 

display. The closer in physical appearance the search template is with the target in the display, 

the stronger the attentional capture of the latter, and consequently the faster observers will detect 

the target (Bravo & Farid, 2009, 2012; Duncan & Humphreys, 1989; Wolfe & Horowitz, 2004). 

In a series of experiments using real-world objects as template cues, Hout and Goldinger (2014) 

manipulated the precision of search templates by varying template-to-target similarity. For 

example, if the search cue was a picture of an empty coffee mug, the target was sometimes that 

specific coffee mug, and other times it would be an inaccurate depiction of the mug (e.g., same 

coffee mug filled with coffee). They found that, although participants knew that targets might 

differ from the search cues, overall search times, scan-path ratios (i.e., ratio of objects fixated 

prior to the target), and verification times increased as the similarity between the expected target 

and the encountered target decreased. These results suggest that accurate search templates are 

crucial for quickly finding target items, as they facilitate search guidance and  target verification.    
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In categorically-defined searches, the information available to construct accurate search 

templates is frequently very vague or limited (Malcolm & Henderson, 2009; Schmidt & 

Zelinsky, 2009). To enhance search efficiency, categorical search templates should be 

constructed with features that generalize to most exemplars of the target category, but remain 

specific enough that is possible to discriminate task-irrelevant features (Bravo & Farid, 2012; 

Castelhano & Heaven, 2010; Ullman, Vidal-Naquet, & Sali, 2002). For instance, Schmidt and 

Zelinsky (2009) observed that search times were reduced when observers were presented with 

detailed categorical cues (e.g., boots) relative to abstract cues (e.g., footwear). Moreover, search 

initiation and guidance, measured as the ratio of initial saccades to target and  scan-path ratios, 

respectively, improved as the cues became more specific (e.g., boots vs. brown boots). These 

results suggest that observers can extract specific information from available categorical cues to 

form search templates, and that task-relevant features can be emphasized when constructing 

categorical search templates. 

An important aspect of categorical search is how categorical knowledge is organized in 

the observer’s semantic network. If category exemplars are organized at different levels or ranks 

within a given category, it is possible that some exemplars may be included in categorical search 

templates for easily than others Early studies demonstrated that objects are organized in a 

categorical hierarchy (Murphy & Brownell, 1985; Rosch et al., 1976). For example, the same 

object (e.g., taxi) can be categorized at a superordinate-level (vehicle), at a basic-level (car), or at 

a subordinate-level (sedan). Research has shown that objects are categorized fastest at the basic-

level (Murphy & Brownell, 1985), and that, when individuals encode either a superordinate or a 

subordinate word, they tend to mistakenly retrieve its basic-level counterpart (Pansky & Koriat, 

2004). In categorical search, Maxfield and Zelinsky (2012) observed reduced search times when 
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observers searched for subordinate-level cues relative to basic-level and superordinate-level 

cues. However, a basic-level advantage was observed during the verification stage of the search, 

suggesting that categorical search templates that generalize to most category exemplars also 

benefit search efficiency. Maxfield and Zelinksky (2012) explained this basic-level advantage in 

terms of categorical specificity, the degree of visual detailsprovided at each hierarchical-level, 

and distinctiveness, how similar (or dissimilar) category exemplars are to other exemplars at 

each hierarchical-level. For instance, subordinate-level cues are very specific, but they are not 

very distinctive as they share features across exemplars (e.g., taxi vs. police car). Visual features 

of superordinate-level cues on the other hand are very distinctive (e.g., vehicle vs. furniture), but 

they do not provide specific details to select target-relevant features. As such, basic-level cues 

provide the most satisfying balance between specificity and distinctiveness, resulting in faster 

target verification times.    

Categorically-Diagnostic Target Features 

Given that object categories can include several exemplars, accurate categorical cues are 

ideal for observers to quickly locate targets. Even when searching for subordinate-level cues, 

observers are faced with a range of features and exemplars within a single category. Therefore, 

one unanswered question in the visual search literature is what determines the most 

representative features of an object category. For instance, when observers are searching for the 

categorical cue helmet, do they search for features akin to a football helmet or to Roman soldier 

helmet? It has been suggested that the most criterial object category features are generalized 

object shapes, rather than specific, simple features (e.g., color or orientation), as simple features 

can easily vary from one category exemplar to the next (Evans & Triesman, 2005; Levin et al., 

2001; Reeder & Peelen, 2013; Ullman, Vidal-Naquet, & Sali, 2002). In some cases, however, 
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generalized object shapes can also vary from one category exemplar to another (e.g., a birthday 

cake may have a different shape than a wedding cake). Theories of visual search, meanwhile, 

operate on the assumption that observers are aware of the categorically-diagnostic features for 

any object category (Duncan & Humphreys, 1989; Wolfe, Cave, & Franzel, 1989). In his latest 

version of Guided Search, Wolfe describes top-down guidance as “based on the match between a 

stimulus and the desired properties of the target…” (p.105, Wolfe, 2007), but does not discuss 

how observers decide on the desired target properties.  

 

        

       

Figure 1 depicts a possible search target for the category car. According to Guided Search 

(depicted in Figure 3), object features in the display are processed in parallel by the visual 

system from early perceptual stages, allowing the observer to perceive the different feature-

configurations in the search environment. Features such as color and orientation are initially 

processed across all objects in the display, along with many other different feature-channels 

(e.g., round shapes for wheels, rectangular shapes for windows). However, a selective attention 

mechanism that matches object features to the search template functions as a filter for further 

processing. In the target example in Figure 2, colors would be matched to red and orientations 

would be matched to leftwards. This feature filtering results in an attentional bottleneck, 

allowing only one template-matching feature to pass the bottleneck at a time, while irrelevant 

features (e.g., green, rightwards) are not selected for further processing. Features that match the 

Figure 2. Example of a search target. 
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search template begin to accumulate past the bottleneck, activating different thresholds for each 

individual feature-channel, including specific, task-relevant feature-channels (e.g., black, round 

shapes for wheels, grayish, rectangular shapes for windows as in Figure 2). Once the activation 

of the task-relevant feature-channels reach a threshold, the target is identified.  

 

Figure 3. Simplified Guided Search model. 

 

Duncan and Humphreys (1989) also proposed a model in which items in the display are 

processed in parallel during early perceptual processing, allocating a limited amount of 

attentional resources to each item. Items are simultaneously grouped by the visual system based 

on feature similarity, with each item receiving a particular weight, or bias, of resources according 

to goal-driven control settings determined by the search template. Because resources are limited, 

greater resource allocation to a particular item decreases the amount resources directed to other 

items, increasing the chances of template-matching items being preferentially selected (as they 

would receive the greatest bias for resource allocation). Given the example in Figure 2, when the 

observer views the display, all items are processed and similar items are grouped together (e.g., 

same-color items are grouped together). Bias for resource allocation would be greater for red 

items, relative to any other color, increasing the chances of the car in Figure 2 being selected. It 
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is important to mention that not all features are processed equally, as bottom-up mechanisms 

influence the allocation of resources in favor of the most salient futures (i.e., color is 

preferentially selected over orientation). 

Guided Search (Wolfe, Cave, & Franzel, 1989) and Duncan’s and Humphreys’ (1989) 

model describe the mechanisms involved in several search phenomena, including target-

distractor similarity and distractor heterogeneity. For example, it is harder to search for targets 

that are very similar to the distractors in the display, because many object features pass the 

attentional bottleneck (Wolfe et al., 1989), or because too many objects receive a bias for 

resource allocation, significantly reducing the amount of resources directed to the target object 

(Duncan & Humphreys, 1989). However, these models neither describe by which mechanism(s) 

observers determine the task-relevant features of categorically-defined targets. For instance, if an 

observer is presented with the categorical cue car, it is assumed that he will automatically include 

the features in Figure 2 (e.g., red, leftwards) in his search template. Levin and colleagues (2001) 

first suggested that search models need to include an explanation of how features are grouped to 

form targets and target categories. In a series of experiments, they asked observers to 

categorically search for either an animal among man-made distractors (i.e., artifacts), or an 

artifact among animal distractors.  They showed that observers quickly located both types of 

categorical targets, but that search was more efficient (i.e., shorter search slopes) when searching 

for an artifact among animals than vice-versa. In their second experiment they showed this effect 

persisted when the features of the target and distractor items were jumbled up. They further 

examined this effect by calculating how much of a rectangular or curvilinear contour each item 

has (i.e., rectilinearity). They proposed that observers may rely on long-term knowledge about 

animals and artifacts to identify categorically-diagnostic target features, namely that some 
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artifacts can have curvilinear shape but no animal has a rectangular shape. In their third 

experiment, a negative correlation between search slopes and rectilinearity was observed for the 

artifacts, but not for animals, suggesting that individuals were using contour shape to locate the 

target (this correlation was later replicated in their fourth experiment). The results from this 

study suggest that observers can rely on long-term knowledge to identify criterial target features 

to attend to when searching for categorical targets (in this case, knowledge that all animals share 

curvilinear shape contours). Levin and colleagues (2001) concluded that existing theories of 

visual search are helpful for understanding and explaining the categorical search data, but they 

have to be expanded to account for observers’ abilities to quickly identify features that specify 

object categories.  

Target Typicality and Visual Search 

There may be several potential sources of information on which observers can rely to 

identify the distinctive properties of categorical targets. One possibility, as suggested by Levin et 

al. (2001), is that observers rely on long-term stored associations between objects and their 

features. For example, when searching for a categorical target, observers might simply search for 

the most stereotypical object in the target category. In fact, research has shown that observers do 

tend to rely on long-term learned regularities about object categories and their features to form 

search templates. This is evident from the effects of target typicality (how “common” the target 

is relative to other same-category objects) on search guidance (Maxfield, Stalder, & Zelinsky, 

2014; Robbins & Hout, 2015), and on target verification times (Castelhano, Pollastek, & Cave, 

2008). These effects show that observers are faster at finding “typical” category exemplars than 

they are at finding atypical exemplars. For example, if an observer searches for “lamp,” she will 

be faster at finding and verifying the target when it is a nightstand lamp than when it is a gas 
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lamp, assuming that nightstand lamps are more frequently encountered than gas lamps in 

everyday life. Similarly, an observer’s search will be significantly slowed down if the target is an 

atypical member of the target category (e.g., lava lamp). 

Although typicality is a viable mechanism that observers use to identify categorically-

diagnostic target features, guidance for typical targets seems to be dependent on the distractors in 

the display. When searching through distractors of the same superordinate category as the target, 

guidance is inhibited by distractor-target similarities (Castelhano et al., 2008; Robbins & Hout, 

2015), but when distractors represent different superordinate categories, typical target objects are 

located faster than atypical target objects (Maxfield et al., 2014). Verification, on the other hand, 

is influenced by typicality because word cues bias the activation of typical category-features 

when constructing categorical search templates (Maxfield et al., 2014). This results in faster 

verification of typical target objects, because they are more likely to share features with the 

search template (regardless of the idiosyncratic details of the category exemplar serving as the 

target object). For example, observers’ mental representations of lamp will be biased toward the 

common features of table lamps, making it easier to identify the target when it is typical (e.g., a 

table lamp) than when it is atypical (e.g., a gas lamp), regardless of which specific nightstand 

lamp is used as the target.  

Research on target typicality has typically examined effects in isolation from other 

potential mechanisms involved in constructing search templates (e.g., episodic memory). It is 

possible that when an alternative source of information is available to inform template creation 

(e.g., recency of experience with a specific object), observers may adopt it over typicality to 

identify the categorically-diagnostic features of a categorical target. Typicality-based templates 

arise from a combination of individual episodic representations of the target category, resulting 
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in a gist representation without including criterial details. On the other hand, “purely” episodic-

based templates result from a single episodic experience, allowing the observer to match, as 

closely as possible, their top-down representation with the search target. Still, it is not known, 

however, to what degree observers can (or will) rely on recent experience with specific objects 

over learned object-regularities to construct search templates.  

Semantic Context of the Search Display 

Although object typicality can be a readily available source of information to build search 

templates, observers may also rely on external, rather than internal, cues to achieve the same 

goal. When the search display contains a specific semantic structure, either by object-to-object 

relations or by the inclusion of a scenic background, attention can be guided by the observer’s 

semantic network (Malcolm & Henderson, 2009; Torralba, Oliva, Castelhano, & Henderson, 

2006; Võ & Wolfe, 2012, 2013). For example, when observers are searching for a pen in an 

office scene, attention will be directed towards the desk (even if the specific office scene is 

novel), because pens are typically located on desks. In visual search through real-world scenes, 

the semantic content of the scene interacts with target information to efficiently guide the search 

(Spotorno, Malcolm, & Tatler, 2014, 2015). However, the semantic content of the scene needs to 

be clear and distinguishable. For instance, Castelhano and Heaven (2010) found that simply 

knowing the gist of the scene prior to search does not improve search performance. Participants 

in their study had previous knowledge about the search context prior to the search task (either by 

previewing the scene or by being cued with a word describing the gist of the scene). Relative to a 

control condition (no preview nor word cue), previewing the search scene improved both search 

initiation and guidance (but not verification). The gist word cue, on the other hand, had no 

significant effect on any of the three search stages (Castelhano & Heaven, 2010).  
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Although prior knowledge of scene gist does not seem to improve search efficiency by 

itself, it is still unknown whether the search context can influence the formation of search 

templates. In categorically-defined search, knowing the gist of the search context prior to search 

may allow observers to incorporate gist-related features in their search templates, resulting in 

more accurate search templates. For example, if observers know they will search for the 

categorical target “hat” within a beach scene, he may adopt a search template that resembles a 

beach hat, instead of a search template resembling any non-specific hat, or a specific, but 

context-irrelevant hat (e.g., a hard hat). As such, it is possible that the semantic context of the 

search display can also define the content of categorical search templates.  

Episodic Memory and Target-Template Formation 

The role of episodic memory in visual search, especially in search guidance, has been a 

topic of recent debate (Horowitz & Wolfe, 1998; Hollingworth, 2012; Peterson et al., 2001; Võ 

& Wolfe, 2012, 2013, 2015; Wolfe, Kemplen, Dahlen, 2000). Studies of contextual cuing and 

repeated visual search have shown that subsequent searches are benefited when preceded by 

repeated exposures to the item arrangement, as well as to the target features and identities, in the 

search display (Chun & Jiang, 1998; Hout & Goldinger, 2010; Huang, Holcombe, & Pashler, 

2004). However, Võ and Wolfe (2013) demonstrated that the utility of episodic memory in 

guiding search depends on the availability and reliability of other sources of guidance (e.g., the 

target information and the scene context). In the absence of an accurate search template, and in 

the presence of conflicting semantic information (i.e., improbable object placement within a 

scene), individuals will rely on episodic memory traces from previous searches to find the target. 

In their study, Võ and Wolfe (2013) had participants search for categorical targets in scenes with 

consistent or inconsistent object arrangements. Participants searched through these displays 
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across two blocks of trials, with shorter search times observed in the second block relative to the 

first block. More importantly, the benefits from repeated search were greater for the conditions 

with improbable object arrangements. These results suggest that episodic memory can reliably 

guide search, and that reliance on episodic guidance is crucial when semantic information 

becomes unreliable.  

Whereas previous research has shown that episodic memory can successfully guide 

search (Chun & Jiang, 1998; Võ & Wolfe, 2012, 2013, 2015), less is known about the role 

episodic memory plays in the formation of target templates. Hollingworth and Henderson (2002) 

showed that observers retain very detailed representations in memory of objects fixated in 

scenes. Participants passively studied real-world scenes in preparation for a long-term memory 

(LTM) test. In some trials, a target object changed in identity (e.g., a notebook to a different 

notebook) or in category (e.g., a notebook to a floppy disk) once the observer’s fixation left the 

region surrounding that object. This procedure allowed for object-changes to occur outside the 

observer’s focus of attention, with observers indicating if a change occurred at the end of each 

trial. The results showed that change-detection performance for both change-types was higher 

than the false-alarm rate for no-change trials. Observers later selected one of two scenes, which 

were visually identical except for the target object (i.e., one was the fixated object and the other 

was the change object). LTM performance for the fixated object was above chance performance, 

regardless of whether the object changed in identity or category (similar results have been 

observed in incidental memory for distractor objects in visual search tasks; e.g., Hout & 

Goldinger, 2010; Williams, Henderson, & Zacks, 2005). These results suggest that once objects 

are fixated, observers are able to stored representations for such objects with high fidelity, which 

later could be used to identify diagnostic target features in a categorical search. For instance, 
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when searching for lamp, observers can incorporate features from previous experience with the 

target into the search template to narrow down search. In fact, when participants are trained to 

associate one specific categorical exemplar to a name cue (e.g., an image of fish with its species 

name), they use very detailed search templates to find the target (Bravo & Farid, 2009). 

However, if the target was not identical to the trained exemplar, this highly detailed template 

became harmful (e.g., different fish of the same species), as reflected by increased search times. 

In a subsequent study, Bravo and Farid (2012) demonstrated that when participants are trained 

on multiple exemplars of single category, they learned to use a more “loose” search template, 

facilitating search when the target varied across trials. However, in many search tasks (both lab-

based and applied), observers usually do not receive ample object category training, which raises 

the question on how extensively experienced do observers’ have to be with an object category 

and its exemplars to incorporate such exemplars in their search templates. It is possible that 

single and specific episodic representations of object categories will suffice to identify target 

features. For instance, if observers were to encode the car exemplar in Figure 1, they may adopt a 

red sedan as their search template when given the categorical cue car, rather than rely on learned 

regularities to form categorical search templates for car.   

Unlike episodic guidance (e.g., Võ & Wolfe, 2013), it is possible that the semantic 

context of the search display may be irrelevant for observers to include episodic representations 

in the search template. For instance, evidence from research on selection history has shown that 

individuals prioritize the selection of information that has been previously attended (Awh, 

Belopolsky, & Theeuwes, 2012; Huang, Holcombe, & Pashler, 2004; Maljkovic & Nakarama, 

1994; Wolfe et al., 2013).  If observers are able to adopt previous instances of attendedobjects as 

the search templates, then they would use such templates regardless of the semantic congruency 
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of the search template and the search display. Therefore, if observers attend to a specific 

exemplar of an object category, they may prioritize the selection of features from that exemplar 

to be included in the subsequent categorical search, regardless of the semantic meaning of the 

display. 

One or Two Search Templates? 

As discussed above, it is possible for observers to rely on either semantic or episodic 

traces to form categorical search templates. However, could it be possible for both sources to 

simultaneously guide search, each by contributing to its own independent search template? Some 

evidence suggests that two different templates can concurrently guide the search. For instance, 

Beck, Hollingworth, & Luck (2012) showed that observers successfully maintained two 

representations (e.g., two colors) during visual search and still found the target. When instructed 

to attend only to one color at a time, observers searched sequentially-exhaustive, meaning that 

they fixated exclusively on items sharing one of the target colors before switching to the other 

color if the target was not found. This type of search yielded significant time costs when 

observers switched from one color to the other. However, when observers were instructed to 

search for both colors simultaneously, observers fixated back and forth on items from both colors 

almost at no costs, indicating that multiple search templates can guide the search when instructed 

to do so.  

Despite the evidence in favor of multiple search templates, some researchers assert that 

only one template can ever guide attention on any given time (e.g., van Moorselar, Theeuwes, & 

Olivers, 2014). Evidence suggests that individuals can hold approximately four independent 

representations in VWM (Luck & Vogel, 1997), and Olivers, Peters, Houtkamp, and Roelfsema 

(2011) proposed a functional division between such representations. Accessory representations 
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are actively maintained in VWM, but cannot access attentional-control processes nor are they 

affected by task-irrelevant information. These are contrasted with attentional template 

representation, which is a single representation located in the focus of attention. Although the 

attentional template can be influenced by task-irrelevant information, it can bias attention 

towards goal-directed items. The attentional template can continuously alternate between the 

multiple accessory representations stored in VWM, however, when one representation is 

selected, the others are denied access to visual input. To test this, van Moorselaar et al. (2014) 

presented observers with arrays of colored squares that had to be remembered for a change-

detection task. Following the offset of the change-array, a search array appeared and observers 

searched for a diamond among circles. Importantly, one of the search distractor circles could be 

colored with 1) the same color as one of the squares in the change-array, 2) a different color than 

those in the change-array, or 3) no color at all. Across several experiments, they showed that 

when only one color square was presented in the change-detection array, search times were 

significantly slowed if the distractor in the search display shared that same color. This suggested 

that the color in the change-detection array occupied the attentional template status. However, 

increasing the number of colored squares in the change-array did not impact search times across 

the different search trial types. These results were taken as support of the functional division 

account of VWM, as colors in trials where the change-detection array size was greater than 1 

were allegedly stored as accessory representations, and the competition between those colors for 

the attentional template status was not resolved by the time observers located the target. 

The literature provides mixed evidence for single and multiple template accounts of 

search guidance. However, it is important to note that in the studies that have examined both of 

these possibilities, the diagnostic target features were readily available to the observers (e.g., two 
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colors or a diamond), which is not the case in a categorical search. Furthermore, even if two 

independent categorical representations are able to simultaneously guide attention, it is still a 

matter of empirical inquiry to investigate by which mechanism those representations are created.  

Contingent Attentional Capture 

The precision of the search template clearly impacts visual search (e.g., Bravo & Farid, 

2009, 2012; Hout & Goldinger, 2014), but the distractor objects through which one searches also 

have an impact on search performance. For example, the level of target-distractor similarity in 

search displays strongly influences the speed with which observers find targets, such that high 

levels of target-distractor similarity increase search times (Alexander & Zelinsky, 2012; Duncan 

& Humphreys, 1989). Even in target absent trials, Alexander and Zelinksy (2012) found that 

participants terminated search more quickly when searching through low-similarity distractors, 

relative to high-similarity distractors. When displays contained high- and low-similarity 

distractors, the percentage of first fixations directed to high-similarity distractors was greater 

than the percentage directed to medium- or low-similarity distractors (Alexander & Zelnisky, 

2012, Exp. 2). The slower responses and high percentage of first fixations directed to high-

similarity distractors in target-absent trials were interpreted as reflecting automatic capture of 

attention by distractors matching the search template.  

As discussed, visual search models (Wolfe et al., 1989; Duncan & Humphreys, 1989) 

suggest that distractors matching the search template slow search because their features break 

through the attentional bottleneck or because resource allocation is biased towards them, 

delaying the processing of the target (if present). In a recent study, Sun and colleagues (2015) 

employed a similar procedure as van Moorselaar et al. (2014), and showed that distractors can 

delay target identification if their features match information being rehearsed in working 
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memory (WM), even if such information is irrelevant to the target item. Participants kept in 

memory either one colored circle (e.g., red) or one word related to that color (e.g., rose) which 

would be later matched to a probe. After encoding the item, they searched for a gray target disk 

containing a tilted line among several gray distractor disks (which contained Xs). In half of the 

trials, one of the distractor disks matched the color of the item in WM, and in the other half, one 

of the distractors was of an unrelated color (e.g., green). Search times were significantly slower 

when participants held a color, or a word related to a color (e.g., rose), in memory while 

searching through displays containing a distractor of the same color, but not when one of the 

distractors was of an unrelated color. These results suggest that, during visual search, spatial 

attention can be captured by features rehearsed in WM, even if such features are irrelevant to the 

search task. Additionally, these results confirm earlier reports (e.g., Olivers et al., 2011) that only 

a single item in VWM can guide attention at one time. 

The allocation of visual selective attention is contingent on the relationship between the 

characteristics of the stimuli and the observer’s attentional-control settings defined by the 

ongoing task (Bacon & Egeth, 1994; Folk, Leber, & Egeth, 2002). Theories of attentional control 

have typically dissociated between bottom-up and top-down attentional control settings, although 

some have advocated for the inclusion of selection history as its own mode of attentional control 

(see Awh, Belopolsky, & Theewes, 2012). Bottom-up attentional control involves the observer’s 

ability to direct attention to physical properties of the stimuli (i.e., external to the observer), such 

as stimulus salience. Top-down attentional control, on the other hand, involves the observer’s 

ability to direct attention according to task-related goals (i.e., internal to the observer), such as 

the search template. Task-demands define an observer’s attentional control setting, making the 

observer more sensitive to bottom-up (stimulus-driven) selection, top-down (goal-driven) 
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selection, or a combination of both. For example, attentional control settings will differ for tasks 

that can be accomplish by relying on stimulus-driven selection (e.g., change-detection) and those 

that rely on goal-driven selection (e.g., visual search). Observers’ attentional control settings then 

bias selection towards objects or features matching their settings, eliciting both voluntary and 

involuntary shifts in attention (Bacon & Egeth, 1994; Folk, Leber, & Egeth, 2002). 

In a series of modern classic experiments, Folk, Leber, and Egeth (2002) presented 

participants with rapid serial visual presentation (RSVP) streams of colored letters, and 

participants reported the identity of a target letter of a pre-specified color (e.g., red). In addition 

to the central stream of letters, four peripheral distractors appeared at different item lags before 

the target letter. They found that target identification was significantly impaired when one of the 

distractors shared the same color as the target letter, but not when the distractors were of any 

other color. This effect suggests that involuntary shifts in spatial attention are due to the selection 

bias towards specific, task-relevant features by the attentional system. Moreover, it suggests that 

visual attention can be captured and directed towards task-irrelevant locations, as participants 

knew that the target would never be found in the periphery. Bias toward task-relevant properties 

is the core of the contingent involuntary orienting hypothesis, which suggests that stimulus 

features will capture attention only if they match top-down attentional control settings (Folk, 

Remington, & Johnston, 1992). In a similar study, Wyble, Folk, and Potter (2013) showed that 

contingent attentional capture is not limited to only distractors sharing the same low-level visual 

features as the target, but that capture also occurs when targets and distractors share the same 

semantic information. They presented participants with RSVP streams of real-world images and 

participants reported the identity of categorically-defined targets. Performance was impaired 

when one of the peripheral distractors (e.g., Ferris wheel) was an exemplar of the same 
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superordinate-level category (e.g., amusement park) as the target image (e.g., bumper cars), 

suggesting that information at the categorical level is enough to automatically capture an 

individual’s attention.  

If involuntary shifts of attention occur when visual features match top-down attentional 

control settings, then any features matching the search template will capture attention, regardless 

if a search is conducted or not. Reeder and Peelen (2013) examined the contents of the search 

template in terms of differences in attentional capture in an unexpected dot-probe task. In their 

study, participants were cued to search for a car or a person in real-world scenes, indicating 

whether the target was present or absent. However, in a critical subset of the trials (25% of 

trials), instead of conducting visual search, participants were briefly presented (67 ms) with 

silhouette primes of a person and of a car at opposite sides of a central fixation cross. After the 

offset of the silhouettes, a dot flashed for 100 ms at one of these two locations, and participants 

indicated via button press on which side the dot appeared. Participants were slower to respond to 

the dot-probe whenever it appeared at the location opposite the search target silhouette. This 

effect suggests that spatial attention is quickly and involuntarily captured by stimuli that match 

the contents of the search template. Therefore, it is possible to examine the contributions of 

episodic and semantic memory in constructing categorical search templates by measuring their 

individual spatial attention capture. For instance, if observers are given the opportunity to use 

episodic, rather than semantic, information to construct a search template, spatial attention 

should be captured by objects sharing episodic features. The present investigation studied the 

influences of episodic and semantic memory in search template formation when recent 

experiences with category exemplars are available to the observer. Given that observers 

prioritize the selection of previously attended information (e.g., Awh et al., 2012), and that such 
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information is retained with high visual detail (e.g., Hollingworth & Henderson, 2002), it is 

possible for observers to rely on  explicit memory traces regarding the target category, rather 

than on long-term representations, to form  search templates.  

The Present Investigation  

 In general, the present study assessed the contents of categorically-defined search 

templates. More specifically, the main goals of this Master’s thesis were 1) to examine if 

observers can rely on a different mechanism other than semantic memory to form search 

templates (e.g., episodic memory) when only categorical target information is available, and 2) 

to explain how these two information sources interact with each other to construct an efficient 

categorical search template. Episodic and semantic memory mechanisms were investigated in 

two experimental designs, addressing the use of internal (Experiment 1) and external 

(Experiment 2) cues in search template creation. In addition, similar to the effects observed on 

search guidance (Võ & Wolfe, 2013), it is possible for episodic and semantic memory to 

compete for prioritization to be included in the target template. Therefore, the relative influence 

of each information source in selecting specific target-features was assessed with within-

experiment manipulations, typicality versus encoded object features in Experiment 1, and 

semantic context versus target repetition in Experiment 2.   

An unanswered question in the visual search literature relates to how observers identify 

categorically-diagnostic target features when searching for categorical targets (Levin et al., 

2001). Although target typicality has been shown to be frequently used by observers to form 

search templates (Castelhano et al., 2008; Maxfield et al., 2014; Robbins & Hout, 2015), it has 

often been studied in isolation from other potential mechanisms involved target-template 

creation. Previous research suggests that observers are able to store representations of objects 
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prior to the search as a result of explicit training (Bravo & Farid, 2009, 2012) and after fixating 

on objects during the search task (Hollingworth & Henderson, 2002). If observers can store 

detailed representations of target objects, it is possible that they may rely on these recent 

experiences with the target category to construct search templates in subsequent categorical 

searches. Also, it is possible for the observer to rely on the semantic context of the search display 

to identify categorically-diagnostic target features. However, whether or not an observer will 

choose to rely on episodic, rather than semantic, information to decide on categorical target 

features remains an unanswered theoretical question.  

In order to measure the content of search templates, I adopted a contingent attentional 

capture paradigm similar to that of Reeder and Peelen (2013), in which participants formed 

categorical search templates in preparation for a search task. In a subset of trials, the contents of 

the search template were assessed using the dot-probe method, allowing the comparison of 

attention capture for episodic- versus semantic-based object features. According to the 

contingent involuntary orienting hypothesis, if the focus of attention is determined by a top-down 

attentional set (i.e., the search template), then spatial attention should be captured by any 

stimulus sharing visual features with that attentional set. The strength of the attentional capture 

was measured by the reaction latency to the onset of the dot-probe, as well as by the number of 

errors made when reacting to the dot-probe. The slower the reaction (or the higher the error-rate), 

the stronger the capture of attention by the object to the opposite side of the dot-probe. This 

would suggest that observers are holding the features of that object (or similar ones) in VWM. 

Therefore, if observers are holding a semantically-constructed template in VWM, attention 

capture should be greater for objects sharing semantic features, relative to objects sharing 

episodic features, that appear opposite the dot-probe. Likewise, if observers are holding an 
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episodically-constructed template in VWM, automatic attention capture should be greater for 

objects sharing those same episodic-features, relative to objects sharing semantically-based 

features.  

The attentional capture of objects sharing episodic features should be stronger than that 

of objects sharing semantic features, as search templates constructed from semantic information 

should not contain the same degree of precision and specificity as those formed from episodic 

memory (Bravo & Farid, 2009, 2012; Hollingworth & Henderson, 2002). In addition, if episodic 

information is adapted into the search template, then attentional capture and search performance 

should remain constant regardless of the congruency between the target object and the search 

display’s semantic context. In two experiments, participants completed visual search for 

categorically-defined targets. The contents of the search template were investigated by having a 

critical subset of dot-probe trials interleaved with search trials. The comparison prime in dot-

probe trials depended on the feature-selecting mechanisms under study. Experiment 1 compared 

encoded objects and object typicality, while Experiment 2 compared target repetition and the 

semantic context. 
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EXPERIMENT 1 

Experiment 1 consisted of two phases, an encoding phase followed by a search phase. 

Each phase was repeated across six blocks. During the encoding phase, participants committed 

one object from twenty different object categories into memory. During the search phase, 

participants conducted multiple categorical searches. A multidimensional scaling (MDS) 

databased was used to assess the similarity relationships between exemplar objects of the same 

category (from Hout, Goldinger, & Brady, 2014). MDS provides a “map” of spatial relationships 

among groups of objects, such that similar objects are located near each other and dissimilar 

objects are located further apart (see Hout, Papesh, & Goldinger, 2012, for a review). I used 

existing measurements of similarity to operationalize the number of features shared by any two 

exemplars of any given category: The closer in MDS space two exemplars were located, the 

greater the number of features they shared (see Figure 4).  

                           

Figure 4. Example of multidimensional scaling (MDS) object similarity relantionship (Figure 3 

from Hout et al., 2014) for the object category "butterfly." 
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Additionally, the MDS database also provides ratings of prototypicality for each object 

within each object category, such that the exemplar that shares the most features with every other 

within-category exemplar (i.e., central position in MDS space) is operationalized as the most 

“typical” object for that object category.1 As such, if an observer relies on semantic memory to 

form the search template, then the features of the most typical (prototypical) object should be 

activated when participants are presented with a categorical target cue. This would be reflected 

in greater attention capture by prototypical category objects relative to other less typical objects 

of the same category.  Conversely, if the contents of the search template reflect the activation of 

object representations stored in episodic memory, then attention capture should be greater for 

objects sharing those specific, activated features, regardless of the object’s typicality. This would 

be reflected by greater attentional capture for objects stored in memory during the encoding 

phase relative to novel objects of the same category. Additionally, if observers adopt the objects 

from the encoding phase as their search template, then greater attention capture for this objects 

should be observed even if those objects are non-prototypical exemplars of their respective 

category. 

Participants. A power analysis (1-β = .95; α = .05; one-tail) conducted on pairwise effect size of 

dot-probe response times observed in experiment 1 of Reeder, Zoest, & Peelen (2015; N = 12, d 

= -0.917) suggested a sample size of 15 participants. However, with the goal of increasing the 

number of observations given the Dot-Probe trial breakdown in the present study (e.g., Studied 

Prototypical-Inconsistent, Novel NonTypical-Consistent), 64 undergraduate Psychology students 

participated in exchange for partial course credit. All participants (Mage = 18.9 years, SD = 1.7; 

                                                           
1 I also informally verified that the prototypical objects selected by the MDS database were 

compatible to what observers would expect from reading the category name by comparing the 

selected object to Google stock images. 
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36 females) were native-English speakers with normal or normal-to-corrected vision, and normal 

self-reported color vision. All participants provided signed informed consent before participating 

in the experiment. 

Stimuli and Apparatus. All stimuli was presented on a 21.5-inch Dell-monitor with a screen 

resolution of 1920 x 1080 and a sampling rate at 60Hz, with all experimental procedures handled 

by E-Prime 2.0 software (Psychology Software Tools, 2006). A pool of over 3800 real-world 

object images from 240 distinct object categories, with pre-analyzed MDS distance data for 

every exemplar pair in each object category (Hout, Goldinger, & Brady, 2014), was used. Across 

participants, 120 randomly selected categories were used as studied targets (encoding phase), 96 

categories were used as unstudied targets (not encoded during encoding phase), and the 

remaining 24 categories served as distractors during search trials. Target categories were never 

repeated across trials, however, distractor categories did repeat across trials. For each target 

category, both studied and unstudied, one typical (the prototypical) and one less typical exemplar 

were selected. The five-dimensional (5D) classification of the MDS database was used to assess 

the typicality of each category exemplar. Prototypical and non-typical objects were selected 

based on their ranking on the 5D centrality ratings for each category. The exemplar ranked the 

highest (i.e., position 1) was used as the prototypical exemplar for each category.  

Figure 5. Prototypical (left) and non-typical (right) exemplars for the category "guitar" 

(positions 1 and 9 on 5D centrality ranking, respectively). 
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Similarly, an exemplar ranked in a mid-distance position (e.g., position 9-10) was selected as the 

non-prototypical object (see Figure 5). The use of mid-distance positions as selection criterion 

for non-prototypical exemplars safeguards that the object was less typical but not too atypical, as 

this might capture attention regardless of whether or not participants are using that object as a 

search template. Additionally, two exemplars from 10 categories (distinct from those in the MDS 

database) were collected from the internet to be used as targets for practice trials.   

Procedure and Design.  There were two independent experimental designs for search trials and 

dot-probe trials. For search trials, the design consisted of a 2 (Target Type: Studied, Novel) x 2 

(Typicality: Prototypical, Non-typical) within-subjects design. The experimental design for dot-

probe trials consisted of a 2 (Target Type: Studied, Novel) x 2 (Typicality: Prototypical, Non-

Typical) x 2 (Dot Location: Congruent, Incongruent) within-subjects design. The experiment 

consisted of six blocks of trials, each starting with an encoding phase followed by a search phase. 

The search phase was comprised of 24 search trials and 8 dot-probe trials, with presentation 

order randomized (across the entire experiment, there was 144 search trials, 48 probe trials). At 

the start of every block of trials, participants committed to memory a set of 20 objects2 from 

distinct categories (half of the objects were prototypical, half were non-typical). Objects were 

presented in random order for 1000 ms each, followed by a 1000 ms inter-stimulus interval (ISI). 

Each object was repeated three times during the study phase. After encoding the memory set, 

participants completed a 2-alternative forced choice (2-AFC) memory test to ensure that the 

                                                           
2 Out of the 20 objects encoded in each block, only 14 were used in the experimental trials, 6 

were used as memory-targets in search trials, while the other 8 were used in dot-probe trials. The 

category of the 6 remaining objects were used as the search cue during half of the target-absent 

search trials. 
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objects were successfully stored in memory. The foil objects during the 2-AFC were rotated 

versions of the encoded exemplars. If rotation was not possible (e.g., circular objects) then the 

color of the exemplar was changed. Participants were instructed that they had to obtain more 

than 80% hits on the memory test, and if they failed to do so they had to notify the researcher 

immediately (the researcher marked the block number that the participant failed before allowing 

him or her to advance to the search phase). Moreover, participants were advised that the memory 

and search tasks were independent and unrelated from each other, and that they could complete 

the search task using any strategy of their preference. After the encoding phase, participants 

searched for target objects through an array of 16 real-world objects. At the beginning of each 

search trial, a categorical target cue appeared at the center of the screen. Following a 2500 ms 

interval, a prompted appear at the bottom-center of the screen asking participants to press 

SPACE to initiate the trial. This 2500 ms interval was imposed to avoid motor errors of 

participants engaging in repeated button presses and mistakenly starting the trial without reading 

the target cue. Moreover, previous research suggest that categorical-target cues require more 

time (800-1000 ms) to be set in VWM relative to template-target cues (Vickery, King, & Jiang, 

2005; Wolfe, Butcher, Lee, & Hyle, 2004). As such, a 2500 ms interval should encourage the 

formation of an accurate categorical search template. In half of the trials (16 trials) the target cue 

was a studied category (i.e., the category of an object studied during the encoding phase) and in 

the other half it was a novel category. After participants initiated the trial, a central fixation cross 

appeared for 500 ms, followed by the presentation of either a search array (75% of trials; 24 

trials) or two object primes from the target category, each at 8.5º of visual angle from either side 

of the fixation cross (25% of trials; 8 trials). If presented with a search array, participants 

searched the array, as quickly as possible, until they self-terminated the search by pressing 
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SPACE. Afterward, the 16 objects were replaced with number digits (1-16) and participants used 

the computer mouse to click on the number in the location of the target, terminating the trial. To 

encourage effort, a 4 second time-penalty was imposed if participants selected the incorrect 

target (see Figure 6). In 25% of the trials (6 trials) the target was a studied-nontypical object; in 

another 25% of trials the target was a studied-prototypical object; in another 25% of trials the 

target was a non-typical exemplar form a novel category (i.e., novel-nontypical); and in the last 

25% of trials the target was the prototypical exemplar from a novel category (i.e., novel-

prototypical; see Appendix A for a trial breakdown). All search trials were target-present trials 

and they were presented in random order.  

 

Figure 6. Example of a search and a dot-probe trial for Experiment 1. 
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If presented with the two object primes, participants were instructed to disregard these 

two images, which disappeared after 75 ms. A black dot-probe appeared 25, 75, or 125 ms 

following the offset of the two primes at one side of the fixation cross for 100 ms. Participants 

were asked to indicate the location of the dot-probe (left or right) as quickly as possible by 

clicking the right or left mouse button. In half of the trials (novel trials; 4 trials), both primes 

were exemplars of a novel category (one non-typical and the prototypical exemplar). Semantic 

trials were always preceded by a novel categorical target cue. In the other half of the trials 

(studied trials; 4 trials), one of the primes was a studied object and the other was a novel object 

of the same category (studied-prototypical and studied-nontypical primes were used an equal 

number of trials). Studied trials were always preceded by a studied categorical target cue. 

Additionally, in half of novel trials (2 trials) the dot-probe appeared on the opposite location as 

the novel-prototypical prime (novel-incongruent trials) while in the other half it appeared in the 

same location as the novel-prototypical prime (novel-congruent trials). Similarly, in half of the 

studied trials (2 trials) the dot-probe appeared in the opposite location as the studied prime 

(studied-incongruent trials) while in the other half it appeared in the same location as the studied 

prime (studied-congruent trials). A four second time-penalty followed an incorrect response, just 

like in the search trials (no feedback was provided following correct responses). Moreover, if 

participants took 1500 ms or more to respond, a prompt appeared on the screen (regardless of 

response accuracy) reminding participants that they should respond as quickly as possible. 

Participants were familiarized with the procedure at the beginning of the experiment by 

completing a shorter memory phase (only 5 objects were studied and tested) as well as 5 search 

trials and 5 dot-probe trials, both randomly intermixed.  
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Results and Discussion  

The significance level for all analyses was set at .05, and all multiple comparisons were 

subjected to Bonferroni corrections. There were no significant differences in memory 

performance across blocks, F(5, 270) = .61, p > .05 (see Appendix C), however, trial blocks in 

which participants did not achieve 80% accuracy on the 2-AFC test were not included in any 

subsequent analyses (13 blocks across 9 participants). Prior to data analysis, outlier trials were 

filtered out, defined as 2.5 standard deviations above each individual subject mean for Search 

Times (Search outliers) and Dot-Probe Response Times (Dot-Probe outliers). This resulted in 3% 

of Search trials (271 trials) and 3.8% of Dot-Probe trials (117 trials) being dropped across all 

participants, with the remaining 11,601 Search trials and 2,851 Dot-Probe trials included in the 

analyses. 

Trial Initiation. In order to understand how efficiently were observers in creating categorical 

search templates, trial initiation times for all trials were examined. This was operationalized as 

the latency of participants’ SPACE press after the onset of the prompt asking them to begin each 

trials. Trial initiation times were collapsed across the six trial blocks. The mean trial initiation 

times for each participant were analyzed in a 2 (Target Type: Studied, Novel) x 2 (Typicality: 

Prototypical, Non-typical) repeated-measures ANOVA. A main effect of Target Type was 

observed, F(1, 63) =7.52, p < .01, η2
p = .11,  in which observers were faster at initiating search 

trials when target cues were from a studied object (M = 517 ms, SE = 20 ms) relative to novel 

objects (M = 538 ms, SE = 22 ms), suggesting that observers produced categorical search 

templates faster when episodic representations are available. The main effect of Typicality and 

the interaction were non-significant. 
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Search Trials. The variable of interest for search trials was the overall search times (STs), 

defined as the latency of participants’ target detection response after the onset of the search array 

(before the objects are replaced with digits). Only correct trials were analyzed, collapsed across 

the six trial blocks3. The mean STs for each participant were analyzed in a 2 (Target Type: 

Studied, Novel) x 2 (Typicality: Prototypical, Non-typical) repeated-measures ANOVA. Main 

effects of Target Type, F(1, 63) = 196.67, p < .00, η2
p = .77, and Typicality, F(1, 63) = 109, p < 

.01, η2
p = .63, were observed, as well as a significant interaction between the two factors, F(1, 

63) = 9.01, p < .01, η2
p = .13. Pairwise comparisons revealed that observers’ STs were faster for 

targets they previously studied (M = 1323 ms, SE = 38 ms) relative to novel targets (M = 1635 

ms, SE = 43 ms), suggesting that the encoded objects were successfully incorporated into the 

search templates. Moreover, observers’ STs were also faster for prototypical targets (M = 1402 

ms, SE = 38 ms) than for non-typical targets (M = 1556 ms, SE = 41 ms), replicating previous 

research on typicality effects in visual search (e.g., Maxfield, Stalder, & Zelinsky, 2014). The 

interaction was characterized by a significantly shorter STs for Novel-Prototypical targets (M = 

1525 ms, SE = 44 ms) than for Novel-NonTypical targets (M = 1745 ms, SE = 45 ms), t(63) = 

8.63, p < .01, Cohen’s d = .63, as well as a significant, but smaller, difference in STs between 

Studied-Prototypical targets (M = 1280 ms, SE = 37 ms), relative to Studied-NonTypical targets 

(M = 1367 ms, SE = 44 ms), t(63) = 3.18 p < .05, Cohen’s d = .27 (see Figure 7). 

                                                           
3 A significant effect of Block was observed in which both, trial initiation and search times, 

overall, were reduced in the later blocks (Blocks 5 and 6) relative to earlier blocks (Blocks 1 and 

2). 
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Figure 7. Search times for Exp. 1. Error bars represent standard errors. 

 

It is important to note that overall STs can only provide partial evidence suggesting the 

prioritization of either episodic or semantic memory for constructing search templates (e.g., 

without eye-tracking it is not possible to observe which search stage is affected by the 

experimental manipulation).  Definitive conclusions about the mechanism used to build 

categorical search templates cannot be drawn from STs without converging support from 

alternative quantifications of the search template. Such specific analyses of the contents of the 

search template came from comparisons conducted on performance during the dot-probe trials. 

For dot-probe trials, the variables of interest were participants’ accuracy (error rate) and response 

times (RTs), defined as the latency of participants’ responses to the location of the dot-probe 

after its onset. 
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Dot-Probe Accuracy. Dot-probe trials were collapsed across the 25, 75, and 125 ms ISIs prior the 

onset of the dot-probe. Overall, participants completed this task with high accuracy for both 

Studied targets (M = 82.78%, SD = 20.55%) and Novel targets (M = 85.27%, SD = 22.36%). 

However, given the emphasis of making these responses as quickly as possible, it was expected 

that participants would make more mistakes when the dot-probe appears at the opposite side of 

the screen relative to the object matching their search template (incongruent trials). Thus, 

differences in error-rates for incongruent, relative to congruent, trials for studied objects would 

provide evidence for the integration of episodic information in the search template. For Studied 

targets, the mean error rate for each participant was entered in a 2 (Typicality: Prototypical, Non-

typical) x 2 (Dot Location: Congruent, Incongruent) repeated measures ANOVA. The results 

showed that the main effect of Dot Location was significant, F(1, 63) = 23.12 , p < .01, η2
p = .25, 

in which Incongruent trials produced higher error rates (M = .22, SE = .03) than Congruent trials 

(M = .13, SE = .02). Additionally, both the main effect of typicality and the Typicality x Dot 

Location interaction were non-significant (both ps > .05), suggesting that attention was equally 

captured by the studied objects, regardless of the object’s typicality (see Figure 8).      

 

Figure 8. Dot-probe accuracy for studied objects in Exp. 1. 
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For novel objects, trials were collapsed across Dot Location as congruent and 

incongruent locations were relative to the prototypical object (i.e., a congruent-prototypical trial 

was the same as an incongruent-nontypical trial). A paired-samples t-test was conducted to 

investigate whether attention was captured by a novel but prototypical object relative to a novel-

nontypical object. The results revealed no significant differences the two type of targets (p > .05; 

Figure 9). 

 

Figure 9. Dot-probe accuracy for novel objects in Exp. 1. 

 

Dot-Probe RT. Only correct dot-probe trials were analyzed. For studied objects, the mean RTs 

for each participant were entered into a 2 (Typicality: Prototypical, Non-typical) x 2 (Dot 

Location: Congruent, Incongruent) repeated measures ANOVA. The results showed a significant 

main effect of Dot Location, F(1, 59) = 4.59, p < .05, η2
p = .07, revealing that participants were 

slower at responding to the dot-probe when it was presented at the opposite side of the studied 

object (M = 346 ms, SE = 10 ms) than when it was presented at the same side as the study object 

(M = 330 ms, SE = 11 ms). The main effect of Typicality and the Typicality x Dot Location 
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interaction were non-significant, reflecting an automatic capture of attention by previously 

encoded objects (see Figure 10), regardless of whether the encoded object was a typical or an 

atypical exemplar of the target category. 

 

Figure 10. Dot-probe RT for studied objects in Exp. 1. 

 

For novel objects, a paired-samples t-test was computed to examine the possibility of slower 

responses for prototypical objects relative to nontypical objects, however, no such difference was 

observed (p > .05; Figure 11).  

Figure 11. Dot-probe RT for novel objects in Exp. 1. 
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The goal of Experiment 1 was to examine if observers are able to rely on specific 

episodic representations, rather than on object typicality, to construct categorical search 

templates. Observers encoded a set of typical and non-typical objects from various categories 

and later completed a categorical search task in conjunction with a dot-probe response task. 

Although the encoding phase and the search phase were independent from each other, observers 

indeed relied on the representations encoded earlier when presented with a categorical search 

cue, as they were significantly faster to create search templates, reflected in shorter trial initiation 

times for studied objects relative to novel objects. More importantly, they were also faster at 

finding studied objects than novel objects (regardless of the typicality of the encoded object). 

These interesting effects suggest that episodic memory can be used to identify categorically-

diagnostic target features, as observers were not explicitly trained on the different target 

categories and their exemplars. Moreover, as predicted by the contingent involuntary orienting 

hypothesis, spatial attention was automatically captured by objects matching the search template 

during dot-probe trials. Participants made more dot-probe response errors, and were much 

slower, when the location of a studied object (prototypical or non-typical) was incongruent with 

the location of the dot-probe. This was not the case for novel objects. These results suggest, that 

participants successfully encoded the specific exemplars of the target categories during the 

memory phase, and later when cued with that target category, the features of encoded exemplar 

were activated relative to any other set of features. Thus, observers relied on episodic memory to 

form search templates almost exclusively, regardless of the typicality of the encoded object. 

However, when an episodic representation is not available, observers seem to default to object 

typicality to construct their search template, given the classic typicality effect observed during 

search trials. Such gist-based representations are accurate enough to efficiently guide the search, 
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yet, they are not detailed enough to automatically capture attention during the dot-probe trials. 

This suggest that observers will rely on single episodic experiences to from categorical search 

templates when possible, as this type of search templates are more detailed and accurate than 

those created from semantic memory, resulting in the automatic attention capture and shorter 

search times. 
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EXPERIMENT 2 

While a category name may activate the most typical category-related features, the same 

name may also activate a very specific set of features in semantic memory depending on 

semantic context where the search will be conducted. For example, searching for boots in a 

jungle likely activates a different set of features than searching for boots in a department store. 

Moreover, if a categorical target is presented again in a later trial, then the previously found 

target may serve as the search template for the target category, regardless of the semantic context 

(Awh, Belopolsky, & Theeuwes, 2012; Huang, Holcombe, & Pashler, 2004). In order to assess 

the role of semantic context and target repetition in the formation of search templates, observers 

in Experiment 2 searched for categorically-defined targets using a variation of the scene-preview 

method (see Hollingworth, 2012; Võ & Wolfe, 2012). The experimental paradigm and design 

was similar to that of Experiment 1, however, there was no encoding phase nor was MDS data 

used to quantify the similarity between objects.  

Participants. A power analysis (1-β = .95; α = .05; one-tail) conducted on pairwise effect size of 

dot-probe response times observed in experiment 1 of Reeder, Zoest, & Peelen (2015; N = 12, d 

= -0.917) suggested a sample size of 15 participants. However, with the goal of increasing the 

number of observations given the Dot-Probe trial breakdown in the present study (e.g., Studied 

Prototypical-Inconsistent, Novel NonTypical-Consistent), 67 undergraduate Psychology students 

participated in exchange for partial course credit. All participants (Mage = 18.5 years, SD = 0.94; 

42 female) were Native-English speakers with normal or normal-to-corrected vision, and normal 

self-report color vision.  



www.manaraa.com

 
 

40 
 

Stimuli and Apparatus. The experiment was conducted using 21.5-inch Dell monitors with 

screen resolution of 1920 x 1080 and sampling rates at 60Hz, with all experimental procedures 

handled by E-Prime 2.0 software (Psychology Software Tools, 2006). A pool of 48 distinct 

scenes was collected from the internet. For each scene category, a matching target category was 

identified (i.e., an object category that could be expected to be found in that scene category). For 

instance, if the scene was football field, then the object category was helmet. Once the match 

between an object category and each scene was made, four different exemplars for the target 

category were collected: two exemplars were semantically-consistent with the scene and while 

the other two were not (they were consistent with a different scene). For football field and 

helmet, for example, there were two exemplars of a football helmet (consistent), one exemplar of 

a roman helmet (consistent with the scene coliseum), and one of a military helmet (consistent 

with the scene military base; see Appendix D). Additionally, 46 “filler” scenes with a single 

semantically-consistent object category were collected to be used as filler search trials. The same 

distractor categories, and their respective exemplars, from Experiment 1 were used as distractors 

for all search trials (these were all semantically unrelated to the target scenes). None of the 

scenes used depicted objects from either the target or the distractor categories. All object images 

were resized to 100 x 100 pixels, on average.  

The stimuli used in Experiment 2 were normed in a pilot study, in which participants (N 

= 9) were presented with each scene (e.g., gym) for three seconds. Following the offset of the 

scene, four exemplars of a target category (e.g., bike) appeared on the screen and participants 

were asked to pick the two exemplars that match the previous scene the best.  
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Procedure and Design. Similar to Experiment 1, participants completed 10 practice search trials 

and 10 practice dot-probe trials prior to the experimental blocks. However, there were only two 

blocks of trials, each consisting of 96 trials (72 search trials and 24 dot-probe trials). At the 

beginning of each trial in Block 1, participants were presented with a randomly selected scene 

prime, along with its corresponding categorical target cue above it, followed 2500 ms later by a 

prompt asking them to press SPACE when they were ready to initiate the trial (see Figure 12). 

Similar to Experiment 1, the offset of the scene and target cues was followed by central fixation 

cross presented for 500ms. On 75% of trials (72 trials) participants searched through an array of 

16 objects for the target and pressed SPACE to terminate the search, erasing the search display 

and replacing the objects with numbers. Afterward, they used the mouse to click the location that 

contained the target. Targets repeated three times (each time in a different location) and in 

random order throughout Block 1 (i.e., 24 different search targets were used in total). All search 

trials were target-present, and all target objects semantically matched the scene that accompanied 

the target cue (e.g., football helmet when searching for helmet in a football field scene).  

 

Figure 12. Example of search and dot-probe trials for block 1. 
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On 25% of trials (24 trials), participants were presented with two object primes from the 

target category, each at 8.5º of visual angle from either side of the fixation cross, for 75 ms. One 

of the primes semantically matched the scene while the other did not. For example, if the scene 

prime was a chemistry lab and the target cue was coat, then one of the primes was a lab coat and 

the other one was a rain coat. It is important to note that target categories used in dot-probe trials 

were different than those used in search trials for Block 1. The same dot-probe procedure as in 

Experiment 1 was adopted, in which the two primes disappeared after 75 ms and a black dot-

probe appeared 25, 75, or 125 ms afterward for a duration of 100 ms on either side of the fixation 

cross. Participants clicked the left or right mouse button as quickly as possible to indicate the 

location of the dot. In half of the probe trials (12 trials), the dot-probe appeared on the opposite 

side as the semantically-matching prime (i.e., semantic-matching trials), while in the other half, it 

appeared in the opposite location of the semantically-mismatching prime (i.e., semantic-

mismatching trials; see Appendix B for a trial breakdown). If observers use the scene prime to 

identify critical target-features, then they should be slower, and make more mistakes, when 

responding to the dot-probe in semantic-matching than in semantic-mismatching trials. A four 

second time-penalty was imposed when participants made incorrect responses for both search 

and dot-probe trials. For dot-probe trials, participants were also prompted to respond more 

quickly if their response latency was greater than 1500 ms.      

Block 2 was similar to Block 1, and it examined whether observers adopted previously 

found targets as a search template when a categorical search cue is repeated. Search trials 

followed the same procedure as Block 1. Participants searched for 24 novel targets paired with 

novel scenes (each one repeated three times) randomized throughout the block (72 search trials 

total). As for the dot-probe trials, the procedure was same as in Block 1, with the sole difference 
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that the target categories were those used during search trials in the previous block. However, the 

categorical target cues were now presented in conjunction with novel scenes from that used in 

Block 1. One of the object primes in Block 2 dot-probe trials was semantically related to the 

novel scene, while the other was a similar, but not identical, object as the search target from 

Block 1 for that target category. For example, if the repeated target cue was helmet (football field 

scene in Block 1) and the novel scene was a military base, then one of the primes was an infantry 

helmet and the other was a different football helmet from the one used as a search target in Block 

1 (see Figure 13).  

 

 

Figure 13. Example of search and dot-probe trials for block 2 (bottom) in reference to search 

target in block 1 (top). 
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Scenes were counterbalanced across participants in such way that some participants 

viewed any given scene (e.g., military base) in Block 1 while others viewed it in Block 2. In half 

of the dot-probe trials in Block 2 (12 trials) the dot-probe appeared at the opposite location as the 

“old” target prime from Block 1 (i.e., episodic-matching trials) while in the other half it appeared 

at the opposite location as the scene-matching prime (i.e., semantic-matching trials). Thus, if 

observers included the repeated target from Block 1 in their search template during Block 2 dot-

probe trials then they should be slower, and make more mistakes, when responding to the dot-

probe in episodic-matching than in semantic-matching trials. 

Results and Discussion 

As in Experiment 1, the significance level for all analyses was set at .05, all multiple 

comparisons were subjected to Bonferroni corrections, and the same outlier filtering techniques 

were used prior to data analysis. This resulted in 3.5% of trials Search trials (339 trials) and 1.1% 

of Dot-Probe trials (36 trials) being dropped across participants, with the remaining 9,309 Search 

trials and 3,180 Dot-Probe trials included in the analyses. 

Trial Initiation. Similar to Experiment 1, trial initiation times for all trials were examined. 

A paired-samples t-test between trial initiation times in Block 1 and Block 2 revealed no 

significant difference (p > .05). However, it was observed that trial initiation times were 

seemingly longer in Experiment 2 than in Experiment 1, which could suggest that, generally 

speaking, it takes longer for observers to convert scene semantics into search templates than it 

takes them to retrieve encoded episodic representations. To examine this, trial initiation times for 

both blocks were collapsed and compared to those observed in Experiment 1. Independent-

samples t-tests confirmed this, as trial initiation times for studied objects in Experiment 1 (M = 

517 ms, SE = 20 ms) were shorter than those observed in Experiment 2 (M = 661 ms, SE = 41 
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ms), t(129) = 3.11, p < .01, Cohen’s d = .54. However, trial initiation times in Experiment 2 were 

also longer than those for novel objects in Experiment 1 (M = 538 ms, SE = 22 ms), t(129) = 

2.57, p < .01, Cohen’s d = .45, which could also suggest that observers simply took longer to 

disengage from the scene before initiating the trial.  

Search Trials. Only correct search trials were analyzed. Overall, search times decreased 

from Block 1 to Block 2, however, a paired-samples t-test revealed that this difference was not 

reliable (p > .05). In contrast to trial initiation times, search times for Experiment 2 were 

remarkably short in comparison to those observed in Experiment 1. Therefore, search times 

across the two blocks were collapsed and compared to search times for the studied and novel 

targets in Experiment 1. Independent-samples t-test showed that observers were faster at finding 

the target when they were semantically primed by a scene (M = 973 ms, SE = 29 ms) relative to 

novel (M = 1633 ms, SE = 43 ms), t(129) = 13.03, p < .01, Cohen’s d =2.29, and to studied 

targets from Experiment 1 (M = 1324 ms, SE = 38 ms), t(129) = 7.54, p < .01, Cohen’s d = 1.32 

(see Figure 14).  

 

Figure 14. Search times for the studied and novel targets in Experiment 1 and for semantic-

priming used in Experiment 2. 
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These results suggest that observers were indeed considering the scene prime as a valid 

source of information to construct their search templates, and that semantic priming may produce 

much more detailed templates than those produced from episodic memory, as the set size for the 

search array remained equal across the two experiments (see General Discussion for an 

alternative explanation). 

 

Dot-Probe Accuracy. Dot-probe trials were collapsed across the 25, 75, and 125 ms ISIs 

prior the onset of the dot-probe. The mean error rate for each participant was analyzed separately 

across the two blocks. For Block 1, a paired-samples t-test revealed that observers made 

significantly more mistakes during dot-probe trials when the dot appeared at the opposite side as 

the semantically-matching prime (M = .22, SE = .03) relative to when it appeared at the opposite 

side as the semantically-mismatching prime (M = .12, SE = .02), t(66) = 5.26, p < .00, Cohen’s d 

= 1.29. This suggests that observers used the scene prime to construct categorical search 

templates, as targets that semantically-match the scene prime automatically captured attention, 

relative to objects from the same target category that did not match the scene.  

Dot-probe trials in Block 2, on the other hand, assessed the contributions of episodic 

memory (i.e., target repetition) on the formation of categorical search templates. However, the 

difference between the error rates for semantic-matching (M = .13, SE = .03) and episodic-

matching trials (M = .09, SE = .02) was only marginally significant, t(66) = 2.07, p = .042, 

Cohen’s d = .51 (two-tailed), and in the opposite direction what was expected if repeated targets 

were included in search templates (see Figure 15). This suggests that, just as in Block 1, attention 

was strongly captured by objects that matched the semantic content of the scene. 
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Figure 15. Dot-probe accuracy for Exp. 2. 

 

Dot-Probe RTs. Only correct dot-probe trials were analyzed. The mean RTs for each 

participant were analyzed separately across the two blocks. For Block 1, a paired-samples t-test 

revealed that observers were slower to respond to the dot-probe when this appeared at the 

incongruent side of the semantically-matching prime (M = 394 ms, SE = 22 ms) than when it 

appeared at the congruent side as the semantically-matching prime (M = 369 ms, SE = 16 ms), 

however, this difference was only marginally significant, t(66) = 1.88, p = .065, Cohen’s d = .46. 

This reflects, in general, that observers tend to reliably integrate the scene context their search 

template, as spatial attention was immediately captured by objects matching the scene prime and 

had to be shifted to the opposite location in order to respond to the dot-probe.  

As with error rates, dot-probe trials in Block 2 examined if observers included previously 

encountered targets as categorical search templates. There was no statically significant 

difference, however, between episodic-matching and semantic-matching trials in Block 2, p > .05 

(see Figure 16).  
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Figure 16. Dot-probe RT for Exp. 2. 

 

 The goals of Experiment 2 were to examine if scene semantics can be used to identify 

categorically-diagnostic target features, and if so, whether or not observers will rely on scene 

semantics when target cues from previous, but different scenes, are repeated. Observers were 

provided with target cues accompanied by a scene primes before completing a categorical search 

task in conjunction with a dot-probe response task. In Block 1, observers integrated the scene 

prime into their categorical search templates, and although this process seem to take longer, it 

resulted in a much more detailed search template, as visual search was significantly faster 

relative to search times observed in Experiment1. Moreover, spatial attention was captured by 

objects that matched the scene prime during dot-probe trials, as observers made more response 

errors for incongruent relative to congruent trials. In Block 2, observers were presented with the 

same target cues as in search trials in Block 1 during dot-probe trials, although cues were 

accompanied by different scene primes than the ones in the previous block. No statistically 

significant effect was observed in terms of response errors and response times during dot-probe 

trials, however, the pattern of result seems to suggest observers did not rely on previously 



www.manaraa.com

 
 

49 
 

encountered targets to form search templates but continued to use the scene prime instead. These 

results from Experiment 2 suggest that when the semantic context is useful, observers 

consistently utilize it to inform categorically-diagnostic target features. 
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GENERAL DISCUSSION 

Summarizing, the goals of my master’s thesis were 1) to examine if observers can rely on 

a different mechanism other than semantic memory to form search templates (e.g., episodic 

memory), and 2) to explain how these two information sources compete with each other to 

construct an efficient categorical search template.  To accomplish these goals, I conducted two 

experiments adopting an attentional-capture paradigm in conjunction with a categorical search 

task, which evaluated whether observers rely on internal (Experiment 1) and external 

(Experiment 2) episodic and semantic cues to identify categorically-diagnostic target features.  

In Experiment 1, observers were able to use internal cues drawing from either a recent 

experience with a category exemplar (e.g., intentional encoding of objects) or semantic memory 

(e.g., typicality). The typicality effect observed in previous studies was replicated, in which 

prototypical objects were found much faster than non-typical objects, suggesting that long-term 

learned statistical regularities of object categories and their features are remarkably influential in 

categorical visual search. Furthermore, the nature of the categorical cue, whether it came from a 

studied or novel object category, not only influenced trial initiation times, but also had a large 

effect on search times (regardless of typicality). Visual search was conducted significantly faster 

for studied targets relative to novel targets, suggesting that observers can successfully rely on 

episodic details of objects to form categorical search templates. An alternative explanation, 

however, is that, given that the studied objects were previously attended during the memory 

phase, observers’ attentional control-settings are attuned to this selection-history (see Awh et al., 

2012), and thus studied objects automatically capture attention and “pop-out” among distractors. 

This might not be the case in the present study, as search times were longer than what pop-out 



www.manaraa.com

 
 

51 
 

effects typically reflect. For example, Wang, Cavanagh, and Green (1994) observed pop-out 

effects for inverted Ns and Zs among normal Ns and Zs to be between 500 ms and 550 ms across 

different array set size. Usually, pop-out effects are characterized by a parallel-search of the 

entire visual array, in which very shallow search slopes are observed, as search times remain 

constant regardless of the set size. The present study did not manipulate set size, however, the 

search times observed for studied objects (1280-1360 ms) were too long for the target object to 

stand out among distractors. Moreover, trial initiation times were significantly shorter when 

target cues related to studied relative to novel objects, which suggest that observers were quickly 

retrieving objects from the study phase to use as categorical search templates. 

Additionally, evidence from the dot-probe trials suggests that the contents of VWM 

reflect an episodic-based search template. Observers made significantly more response errors 

when the location of an encoded object was incongruent with the location of the dot-probe, given 

the task pressure of making a response as quickly as possible. This was not the case for novel 

target categories and their exemplars, which suggests that when presented with studied category 

cues, episodic representations for the target objects are strongly activated. Moreover, observers 

were also much slower at responding to the dot-probe when it was opposite to an encoded object. 

However, it is important to mention that the size of this effect was relatively small. On average, 

Reeder and colleagues (2013, 2015) observed RT differences for congruent and incongruent dot-

probe trials ranging from 20 to 45 ms. The RT difference in the present study was much shorter 

(16 ms), although it is possible that the same task-demands of making quick responses, which 

evoked the response error effects, might have reduced the difference in RTs. Future research 

using eye-tracking may support the evidence found in the present investigation. 



www.manaraa.com

 
 

52 
 

In Experiment 2, observers were able to use contextual information from the search 

display to form highly detailed categorical search templates. More importantly, in Block 2 of 

Experiment 2, observers had the opportunity to use previously encountered targets as search 

templates or to continue to rely on the semantic context of the display to do so. The results show 

that observers, when given the opportunity, incorporate the search context into their search 

template. In Block 1, observers made more response errors, and were relatively slower, when the 

location of objects that were semantically related to the scene primes were incongruent with the 

location of the dot-probe. Moreover, when target cues later repeated in Block 2, observers 

continued rely on semantic primes presented at the beginning of each trial to form their search 

template, rather than incorporate features of targets found in Block 1, as they made relatively 

more response errors for the semantically related prime. However, an alternative explanation is 

that observers were not able to incidentally encode target objects in Block 1, even after three 

repetitions, due to the lack of meaningful spatial associations between the objects in the search 

array. For instance, Draschkow, Wolfe, and Võ (2014) reported higher recall rates for target 

objects found when search through real-world scenes than when participants were asked to 

intentionally memorize the objects in those scenes. This counterintuitive effect, however, was 

not observed when the object array was embedded in neutral background (e.g., brick wall), 

which suggests that the meaningful associations between objects in the array facilitates incidental 

encoding. Since the present study used search arrays with essentially no meaningful association 

between objects (white background with randomly located objects), the findings of Draschkow et 

al. (recently replicated by Josephs et al., 2016) suggests that it is possible that observers in the 

present study were not successful at incidentally encoding the targets in LTM. It is also 

important to note that the “repeated” exemplars used in dot-probe trials of Block 2 were not 
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identical to those used in the search trials of Block 1. This was purposefully done to encourage 

the inclusion of LTM representations for those exemplars  in the search template rather than 

attention being capture due to repetition-priming. Still, given the surprisingly fast search 

produced by semantic priming, and the relatively higher error-rate for semantically-matching 

objects during the dot-probe trials, it is more plausible that observers integrated the semantic 

content of the scene into their search template, without perhaps even probing their memory for 

previously encountered targets, as the scene prime provided enough information to quickly 

identify the categorically-diagnostic target features. 

Another important aspect that possibly influenced the continued reliance on the semantic 

context over LTM representations in Experiment 2 was that semantic primes were always valid 

during search trials, as the search targets was always related to the scene. If, however, semantic 

primes stopped being a reliable source of information it is possible that observers would have 

change strategies and turned to their LTM representations for the incidentally encoded targets to 

form search templates. In fact, recent research by Bravo and Farid (2016) suggests that when 

observers undergo extensive training to remember target exemplars of an object category (e.g., 

watches), they are able to switch between each representation depending on the search context 

(type of distractor make-up of the search array) when the context is cued before the search trial. 

However, it is possible that observers cannot switch strategies when only incidentally encoding 

target objects, as the LTM representations may not be retrievable due to retroactive interference. 

Future research can investigate this possibility by directly manipulating the validity of the 

semantic prime during later search trials by simply varying the proportion of valid and invalid 

semantic primes in Block 2 of Experiment 2, relative to a group of observers who receive only 

valid semantic primes throughout the experiment. 
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As noted before, the results of Experiment 2 suggest that observers can and will 

incorporate scene semantics into categorical search templates. What was unexpected from the 

present investigation was the efficiency of this process. Compare to observers in Experiment 1, 

observers in Experiment 2 took longer to initiate each trial, but were much faster at searching for 

categorical targets when relying on scene primes to identify critical target-features, even though 

observers in Experiment 1 had previously seen (and intentionally encoded) the target objects. 

These results could reflect a trade-off between the latency to create search templates and the 

precision of such representations, with more detailed categorical templates taking longer to be 

constructed. However, it is also plausible that observers in Experiment 2 took longer to initiate 

each trial because they had to disengage from a visually-vivid image, regardless of whether or 

not they had already created their search template. Of more interest are the search time 

differences across the two experiments. There are two potential explanations for such results. 

The first, of more practical importance, is that the target stimuli used in Experiment 1 came from 

the same database as the distractor stimuli, while in Experiment 2, the target stimuli were 

downloaded from stock images on the internet and the distractor stimuli was not (same stimuli as 

in Experiment 1). The target stimuli in Experiment 2 was resized to match the distractor stimuli, 

however. Given that the same exact distractor categories and exemplars were used in both 

experiments, it is possible that the target-distractor similarity (Duncan & Humphreys, 1989) in 

stimuli characteristics in Experiment 1 might have made the search harder relative to Experiment 

2. However, such explanation would warrant much shorter search times for Experiment 2, where 

they seem long enough (973 ms) that the “pop-out” account proposed for Experiment 1 may not 

by compatible here either. Nonetheless, it is possible to test this explanation empirically by using 

the same target and distractor stimuli in a between-subjects design, in which one group of 
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observers encode objects and later search for them while another group of observers are 

semantically primed to search for those same exact objects. This between-groups design would 

allow for the direct comparison across conditions to ensure that the present effect is not due to 

the stimuli differences. 

The second explanation, of more theoretical importance, is that semantic priming, relative 

to episodic retrieval, is an inherently more efficient mechanism due to the large network of 

semantic associations learned through the lifespan. This may allow the observer quickly produce 

and upload a highly detailed search template onto VWM. On the other hand, it is also possible 

that semantic priming does not activates “complete” search templates but instead it only activates 

the specific features of an object category associated with the semantic prime. In the case of 

football field and helmet, only the cage-like mask characteristic of all football helmets is 

activated, rather than a single and concrete representation of a football helmet (as would be 

expected if one intentionally retrieves a specific target exemplar from episodic memory). This 

means that possibly, scene semantics allows the observer to distinguish an object from other 

subordinate-level objects of the same category. Such distinction is not possible when only 

categorical (verbal) information about the target object is available. Future research should 

investigate such account in relation to a non-categorical template search, as it would provide a 

baseline for search performance, as well as for the latency for “setting-up” the search template, 

too ensure that these data are not a result of the current experimental design.  

It has been previously noted that, although current models of visual search are able to 

account for the efficiency of categorical searches, they should also explain the mechanisms by 

which observers identify categorically-diagnostic target features (Levin et al., 2001). Recent 

research on categorical visual search has focused on demonstrating the precision and 
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effectiveness of word cues in allowing observers to form highly detailed search templates 

necessary to find targets (e.g., Maxfield & Zelinsky, 2012; Schmidt & Zelinsky, 2009). 

Additionally, search times, time-to-target and verification, are shorter when target objects are 

typical exemplars of the target category (Maxfield, Stalder, & Zelnisky, 2014).The present study 

expanded upon this previous research and investigated the mechanisms involved in search 

template formation when episodic information about the categorical target is available to  

observers. It has been demonstrated that through training observers are able to identify 

categorically-diagnostic target features to build flexible, but specific, search templates in 

preparation for search tasks (Bravo & Farid, 2012). However, the present study supported the 

idea that observers are able to construct highly detailed search templates in the absence of 

training if specific experiences with target categories are available. More importantly, these 

specific experiences with the target categories and their exemplars came from a different, 

supposedly unrelated memory test, and not from the search task itself. This implies that when a 

recent experience with the target category is readily available to be incorporated into the search 

template, observers will prefer to do so, possibly because it produces a more accurate search 

template. 

Similar to the impact of episodic memory in categorical search, the effects of the 

semantic context of the search display on search template formation have not been directly 

investigated in the literature. The present study aimed to address this and examined how 

observers incorporate information from the search environment into their search template. 

Furthermore, the present study also tested whether observers use episodic information from 

previous searches regardless if such information is inconsistent with the semantic context of the 

search display. However, the present study suggests that observers continuously rely on scene-
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semantics to identify categorically-diagnostic target features, regardless of information retrieved 

from previous searches. This perhaps occurs because semantic priming is much faster, and 

potentially less effortful, than memory retrieval, especially when the semantic context of the 

search is always a reliable source of information. 

Lastly, it has also been recently proposed that differences in task performance caused by 

internally generated visual representations (i.e., representations formed in the absence of physical 

visual stimulation), such as in categorical visual search, may be influenced by individual 

differences in visual imagery, expertise with different object categories, and occipital lobe 

anatomy (Reeder, in press). The present study cannot attest to this account, however, it is 

possible that the results observed here might have been influenced by individual differences in 

memory retrieval abilities (see Brewer & Unsworth, 2012). Future research on the topic of 

individual differences in visual processing is necessary to elucidate such account. 

In conclusion, this investigation provided some insights into the mechanisms observers 

use to identify categorically-diagnostic target features, which have not been directly addressed 

by models of visual search (e.g., Duncan & Humphreys, 1989; Wolfe et al., 1989, 2007). The 

findings from this thesis reflect a more comprehensive understanding of how categorical search 

templates are formed as well as when different sources of information (e.g., episodic and 

semantic memory) are preferred by observers to construct an efficient categorical search 

template.  
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APPENDIX A 

Appendix A. Table summarizing the trial breakdown collapsed across the 6 blocks of trials in 

Experiment 1. 

Total trials in Experiment 1: 192 Search Trials (75%, 144 

trials) 

Dot-Probe Trials (25%, 48 

trials) 
Search Target (Studied-Nontypcial) 36 n/a 

Search Target (Studied-Prototypical) 36 n/a 
Search Target (Novel-Nontypical) 36 n/a 

Search Target (Novel-Prototypical) 36 n/a 
Dot-Probe (Studied Proto-Incongruent) n/a 6 

Dot-Probe (Studied NonTyp-

Incongruent) 
n/a 6 

Dot-Probe (Studied Proto-Congruent) n/a 6 

Dot-Probe (Studied NonTyp-Congruent) n/a 6 
Dot-Probe (Novel Proto-Incongruent) n/a 6 

Dot-Probe (Novel NonTyp-Incongruent) n/a 6 

Dot-Probe (Novel Proto-Congruent) n/a 6 
Dot-Probe (Novel NonTyp-Congruent) n/a 6 
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APPENDIX B 

 

Appendix B. Table summarizing the trial breakdown across the two blocks in Experiment 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total trials in Experiment 2: 192 Search Trials (75%, 144 

trials) 

Dot-Probe Trials (25%, 48 

trials) 

Block 1 total trials: 96   
Repeated Search Target (24 x 3) 72 n/a 

Dot-Probe (Semantic-Matching) n/a 12 
Dot-Probe (Semantic-Mismatching) n/a 12 

Block 2 total trials: 96   
Repeated Search Target (24 x 3) 72 n/a 

Dot-Probe (Episodic-Matching) n/a 12 
Dot-Probe (Semantic-Matching) n/a 12 
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APPENDIX C 

 

Appendix C. Proportion of correct 2-AFC recognition across trial blocks in Experiment 1. 
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APPENDIX D 

Appendix D. Object categories, scene categories, and object exemplars used as target stimuli in 

Experiment 2. 

Target Category Scene Matching Object Mismacthing Object 

cake wedding wedding cake birthday cake 

glass fancy dinner wine glass pint glass 

lamp living room floor lamp gas lamp 

knife kitchen kitchen knife combat knife 

fish room goldfish swordfish 

bear iceberg polar bear teddy bear 

mouse mouse-trap mouse computer mouse 

battery car shop car battery aa battery 

plant desert cactus tulip 

razor barber shop barbershop razor gillette 

brush bathroom sink toothbrush paint brush 

drill dentist office dentist drill construction drill 

snack movie theater popcorn orange 

boat river row boat yacht 

key door entrance key computer key 

jacket ski slope ski jacket motorcycle jacket 

truck boys room toy truck real truck 

butterfly garden real butterfly butterfly clip 

shot bar shot glass medical shot 

pin sewing sewing pin push pin 

skirt st pattys irish skirt club skirt 

pick music store guitar pick pickax 

weight gym barbell paper weight 

food baseball game hotdog sushi 

helmet football field football helmet roman helment 

boots jungle jungle boots rain boots 

mask operating room surgeon mask wrestling mask 

hat baseball field baseball hat beach hat 

ball soccer field soccer ball basketball 

pet dog  house dog cat 

glasses library eyeglasses sunglasses 

shoes office shoes bowling shoes 

bell classroom school bell church bell 

gun woods hunting gun water gun 

car driveway sedan golf car 

goggles skii mountain skii googgles swimming goggles 

coat chemistry lab lab coat rain coat 

eggs diner eggs cooked eggs 

clock living room grandfather clock classroom clock 

flag mount rushmore american flag football flag 

paper breakfast newspaper toilet paper 

clip pantry chip clip hair clip 

glove doctors office latex glove baseball glove 

speaker car interior car speaker concert speaker 

stick hockey rink hockey stick pool stick 

bike road road bike dirt bike 

backpack hiking path hiking backpack backpack 

telephone street sidewalk payphone cellphone 
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APPENDIX E 

 

Appendix F. Copy of Institutional Review Board approval for Human Subject Research. 
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